wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If in ABC,acosA+bcosB+ccosCasinB+bsinC+csinA=a+b+c9R, then the ABC is

A
isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
equilateral
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
right-angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B equilateral
Since,acosA+bcosB+ccosCasinB+bsinC+csinA=a+b+c9R
2RsinAcosA+2RsinBcosB+2RsinCcosCa×b2R+b×c2R+c×a2R=a+b+c9R
2R2[sin2A+sin2B+sin2C]ab+bc+ca=a+b+c9R .............(1)
Now, sin2A+sin2B+sin2C
=2sin(A+B)cos(AB)+2sinCcosC
=2sin(πC)cos(AB)+2sinCcosC
=2sinCcos(AB)+2sinCcos(π(A+B))
=2sinC[cos(AB)cos(A+B)]
=2sinC[2sin(AB+A+B2)sin(ABAB2)]
=4sinCsinAsinB
=4sinAsinBsinC
Substituting for sin2A+sin2B+sin2C=4sinAsinBsinC in (1) we get
2R2[4sinAsinBsinC]ab+bc+ca=a+b+c9R
2R2[4a2Rb2Rc2R]ab+bc+ca=a+b+c9R
On simplifying we get
abcab+bc+ca=a+b+c9
9abc=(a+b+c)(ab+bc+ca)
On Re-arranging we get
a(b2+c22bc)+b(c2+a22ca)+c(a2+b22ab)=0
a(bc)2+b(ca)2+c(ab)2=0
which is possible when ab=0,bc=0,ca=0
a=b=c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basics of geometry
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon