If in △ABC,acosA+bcosB+ccosCasinB+bsinC+csinA=a+b+c9R, then the △ABC is
A
isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
equilateral
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
right-angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B equilateral Since,acosA+bcosB+ccosCasinB+bsinC+csinA=a+b+c9R ⇒2RsinAcosA+2RsinBcosB+2RsinCcosCa×b2R+b×c2R+c×a2R=a+b+c9R ⇒2R2[sin2A+sin2B+sin2C]ab+bc+ca=a+b+c9R .............(1) Now, sin2A+sin2B+sin2C =2sin(A+B)cos(A−B)+2sinCcosC =2sin(π−C)cos(A−B)+2sinCcosC =2sinCcos(A−B)+2sinCcos(π−(A+B)) =2sinC[cos(A−B)−cos(A+B)] =2sinC[−2sin(A−B+A+B2)sin(A−B−A−B2)] =4sinCsinAsinB =4sinAsinBsinC Substituting for sin2A+sin2B+sin2C=4sinAsinBsinC in (1) we get ⇒2R2[4sinAsinBsinC]ab+bc+ca=a+b+c9R ⇒2R2[4a2Rb2Rc2R]ab+bc+ca=a+b+c9R On simplifying we get ⇒abcab+bc+ca=a+b+c9 ⇒9abc=(a+b+c)(ab+bc+ca) On Re-arranging we get ⇒a(b2+c2−2bc)+b(c2+a2−2ca)+c(a2+b2−2ab)=0 ⇒a(b−c)2+b(c−a)2+c(a−b)2=0 which is possible when a−b=0,b−c=0,c−a=0 ∴a=b=c