The correct options are
B 8:5:9
C 5:8:9
As A+B+C=π, so
tanA+tanB+tanC=tanAtanBtanC⇒6=2tanC⇒tanC=3
So, ∠C lies in the first quadrant
sinC=3√10sin2C=910⋯(1)
Now,
tanA+tanB=3tanAtanB=2⇒tanA+2tanA=3⇒tan2A−3tanA+2=0⇒(tanA−1)(tanA−2)=0⇒tanA=1,2⇒tanB=2,1
So, ∠A,∠B are acute angles,
sinA=1√2,2√5⇒sin2A=12,45⇒sin2A=510,810⋯(2)⇒sin2B=810,510⋯(3)
From equation (1),(2) and (3),
sin2A:sin2B:sin2C=8:5:9 or 5:8:9