Let the radii of the two circles be r1 and r2. Let an arc of
length I subtend an angle of 60∘ at the centre of the circle of
radius r1, while let an arc of length I subtend an angle
of 75∘ at the centre of the circle of radius r2.
Now, 60∘=π3 radian and 75∘=5π12 radian
We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then
θ=lr or l=rθ
∴l=r1π3 and l=r25π12
⟹r1π3=r25π12
⟹r1=r254
⟹r1r2=54