The correct option is A 4
Let I=∫2π0|xsinx|dx
=∫2π0x|sinx|dx[∵|x|=xforx>0]
I=∫2π0(2π−x)|sinx|dx[Using Note 2 below]
2I=∫2π02π|sinx|dx
I=π∫2π0|sinx|dx
=2π∫π0|sinx|dx[using note (1) below]
=4π∫π/20|sinx|dx=4π[−cosx]π/20
I=4π
So, ∫2π0|xsinx|dx=kπ
⇒4π=kπ⇒k=4
Note: (1)∫2a0f(x)dx={2∫a0f(x)dx,iff(2a−x)=f(x)0,iff(2a−x)=−f(x)
(2)∫baf(x)dx=∫baf(a+b−x)dx