If ∫α0dx1−cos α cos x=Asin α+B (α≠0).Then possible values of A and B are
A=π2, B=0
A=π4, B=π4 sin α
I=∫α0dx1−cos α cos x
=∫α0dx2 sin2(α2)cos2x2+2 cos2(α2) sin2x2
=12∫α0(sec2α2) sec2x2tan2(α2)+tan2x2 dx
Put tanx2=t, we have
I=∫tan α20sec2(α2) cot(α2)[tan−1(ttanα2)]tan α20
=2sin α.π4=π2 sin α
Thus, Asin α+B=π2 sin α satisfy the last equation.