If ∫b0dx1+x2=∫∞bdx1+x2,then b=
tan−1(13)
√32
√2
1
tan−1b=tan−1∞−tan−1b
2tan−1b=π2⇒b=1
If y=tan−1(11+x+x2)+tan−1(1x2+3x+3)+tan−1(17+5x+x2)+…n terms, then (dydx)x=0=