If ∫π20sinx1+sinx+cosxdx=k, then ∫π20dx1+sinx+cosx is-
k2
π2−k
π2−2k
π2+k
∫π20sinx1+sinx+cosxdx=∫π20cosx1+sinx+cosxdx=k⇒∫π20(11+sinx+cosx)dx=2k⇒∫π20dx1+sinx+cosx=π2−2k