If ∫x0f(t)dt=x+∫1xt f(t) dt, then the value of f(1) is [IIT 1998; AMU 2005]
0
−12
∫x0 dt=x+∫1xt f(t) dt⇒∫1xt f(t) dt=x−∫x1t f(t) dt Differentiating w.r.t x, we get f(x)=1+{0−x f(x)} ⇒f(x)=1−x f(x)⇒(1+x)f(x)=1⇒f(x)=11+x ∴f(1)=11+1=12
Let g(x)=∫x0f(t) dt where 12≤f(t)≤1,tϵ[0,1] and 0≤f(t)≤12 for tϵ(1,2), then [IIT Screening 2000]