If ∫11+sinx=−2(a+tanx2)+C, then
We have,
I=∫dx1+sinx
I=∫dx1+2sinx2cosx2
I=∫sec2x2dxsec2x2(1+2sinx2cosx2)
I=∫sec2x2dx⎛⎜ ⎜⎝sec2x2+2sinx2cosx2⎞⎟ ⎟⎠
I=∫sec2x2dx(1+tan2x2+2tanx2)
I=∫sec2x2dx(1+tanx2)2
Let t=1+tanx2
dtdx=0+sec2x2×12
2dt=sec2x2dx
I=2∫dt(t)2
I=2(−1t)+C
I=−2(1+tanx2)+C
On comparing, we get
a=1,C∈R.
Hence, this is the answer.