If ∫11+sinxdx=tan(x2+a)+c, then
We have,
∫11+sinxdx
=∫11+2tanx21+tan2x2dx
=∫1+tan2x21+tan2x2+2tanx2dx
=∫sec2x2(1+tanx2)2dx
Let
tanx2=t
12sec2x2dx=dt
⇒sec2x2dx=2dt
∫2dt(1+t)2
⇒∫2(1+t)−2dt
⇒2∫(1+t)−2dt
⇒2(1+t)−2+1−2+1
⇒2(1+t)−1−1
⇒−2(1+t)
Put t=tanx2
Then,
⇒−2(1+tanx2)=tanx2+a
Hence, this is the
answer.
Hence, this is the
answer.