If ∫sin2x(3+4cosx)3dx=a+bcosxc(3+4cosx)d+e, where e is an arbitrary constant and a,b,c,d are positive integers then minimum value of a+b+c+d is equal to
∫sin2x(3+4cosx)3dx=a+bcosxc(3+4cosx)d+e ....(1)
Consider,I=∫sin2x(3+4cosx)3dx
Substitute 3+4cosx=t
⇒−4sinxdx=dt
I=−18∫t−3t3dt
=−18∫1t2−3t3dt
=−18(1t+32t2)+e
=2t−316t2
=8cosx+316(3+4cosx)2+e
⇒a=3,b=8,c=16,d=2
Hence, a+b+c+d=29