The correct option is C x4−2x3+3x2−3x+32
I=∫e2x.x4dx
Applying integration by parts,
=x4e2x2−∫4x3e2x2dx
I=x4e2x2−2∫x3e2xdx
Again applying integration by parts
I=x4e2x2−2x3e2x2+2∫3x2e2x2dx
⇒I=x4e2x2−x3e2x+3∫x2e2xdx
Again applying integration by parts, we get
I=x4e2x2−x3e2x+3x2e2x2−3∫2xe2x2dx
I=x4e2x2−x3e2x+32x2e2x−3∫xe2xdx
Again applying integration by parts, we get
I=x4e2x2−x3e2x+32x2e2x−32xe2x+3∫e2x2dx
⇒I=x4e2x2−x3e2x+32x2e2x−32xe2x+34e2x+C
⇒I=e2x2(x4−2x3+3x2−3x+32)+C
On comparing with given , we get
f(x)=x4−2x3+3x2−3x+32