If ∫f(x)dx=Ψ(x), then ∫x5f(x3)dx is equal to:
Let I=∫x5f(x3)dx
=∫x3⋅x2f(x3)dx
Put x3=t, then 3x2dx=dt.
I=13∫tf(t)dt
=13[t∫f(t)dt−∫(ddt(t)−∫f(t)dt)dt]
=13[x3Ψ(x3)−∫Ψ(x3)(3x2dx)]
=13x3Ψ(x3)−∫x2Ψ(x3)dx