If ∫2dx((x−5)+(x−7))√(x−5)(x−7)=f(g(x))+c, then
f(x)=tan−1x
g(x)=√(x−5)(x−7)
(x−5)+(x−7)=2(x−6)
and (x−5)(x−7)=x2−12x+35=(x−6)2−1....(1)
∴I=∫dx(x−6)√(x−6)2−1=sec−1(x−6)=tan−1[(x−6)2−1]12∵sec−1z=tan−1√z2−1=tan−1√(x−5)(x−7)
=f(g(x))
∴f(x)=tan−1x and g(x)=√(x−5)(x−7)