wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosxx(x2lnx+1)dx=f(x)+c;
f(1)=cos1 and f(x).sec2xdx=g(x)+c, g(1)=0 and L=limx0+g(x),then

A
f(x)=cosx(1+lnx)xsinx lnx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
g(x)=x lnxcosx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
L=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
limxg(x)x2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B g(x)=x lnxcosx
C L=0
cosxv.xlnxu dx+cos xu.1xvdx
=xlnx.sinx(lnx+1)sinx dx+cosxlnx+sinx.lnxdx
=xlnxsinx+cosx+cosx lnxf(x)+c
Now cosx(1+lnx)+xlnxsinxcos2xdx=x lnxcosx+c

(Using(f(x)+xf(x))dx=xf(x)+c)
L=limx0+xlnxcosx=0 and limxg(x)x2=limxlnxxcosx
when x=(2x+1)π2,n
lnxxcosx is not defined.
So limit does not exist.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon