If ∫cosxx(x2lnx+1)dx=f(x)+c; f(1)=cos1 and ∫f(x).sec2xdx=g(x)+c′,g(1)=0 and L=limx→0+g(x),then
A
f(x)=cosx(1+lnx)−xsinxlnx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
g(x)=xlnxcosx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
L=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
limx→∞g(x)x2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Bg(x)=xlnxcosx CL=0 ∫cosxv.xlnxudx+∫cosxu.1xvdx =xlnx.sinx−∫(lnx+1)sinxdx+cosxlnx+∫sinx.lnxdx =∫xlnxsinx+cosx+cosxlnxf(x)+c Now ∫cosx(1+lnx)+xlnxsinxcos2xdx=xlnxcosx+c
(Using∫(f(x)+xf′(x))dx=xf(x)+c) L=limx→0+xlnxcosx=0 and limx→∞g(x)x2=limx→∞lnxxcosx when x=(2x+1)π2,n→∞ lnxxcosx is not defined. So limit does not exist.