If ∫dx(1+√x)2010=2[1α(1+√x)α−1β(1+√x)β]+c, where c is constant of integration and α,β>0, then α−β is
1
2
-1
-2
∫dx(1+√x)2010
=∫√x√x(1+√x)2010dx
=2∫t−1t2010dt (t=1+√x)
=2[12009t2009−12008t2008]+c
⇒α=2009,β=2008