If ∫dxx2(xn+1)(n−1)n=−[f(x)]1n+C then f(x) is
1+x−n
∫dxx2(xn+1)(n−1)n=∫dxx2.xn−1(1+1xn)(n−1)n
=dxxn+1(1+x−n)(n−1)n
Put 1+x−n=t
∴−nx−n−1dx=dtordxxn+1=−dtn
=dxxn+1(1+x−n)(n−1)n=−1n∫dtt((n−1)n)
=−1n∫t1n−1dt=−1n.t1n−1+11n−1+1+c=−t1n +c
=−(1+x−n)1n +c