The correct option is A f(x)=log(logx);g(x)=1logx
Let I=∫{log(logx)+1(logx)2}dx
Put logx=t or x=et dx=etdt
∴I=∫(logt+1t2)etdt=∫(logt+1t−1t+1t2)dt
=∫(logt+1t)etdt+∫(−1t+1t2)etdt
=∫logtetdt+∫ettdt+∫(−1t)etdt+∫(et1t2)dt
Integrating by parts we get
=(logt)et−∫1tetdt+∫et.1tdt+∫(−1t)et−∫1t2etdt+∫et1t2dt+c=x(loglogx−1logx)+c=x(f(x)−g(x))+c
∴f(x)loglogx;g(x)=1logx