If ∫(sin2x+cos2x)dx=1√2sin(2x−a)+C, then
Consider the given integral.
∫(sin2x+cos2x)dx=1√2sin(2x−a)+C …….. (1)
Now,
I=∫(sin2x+cos2x)dx
I=−cos2x2+sin2x2+C
I=12[sin2x−cos2x]+C
I=√22[1√2sin2x−1√2cos2x]+C
I=1√2[cosπ4sin2x−sinπ4cos2x]+C
I=1√2sin(2x−π4)+C
On comparing above equation, we get
a=π4,C∈R
Hence, this is the answer.