∫tan7xdx
put tanx=t
dx=dt1+t2
=∫t7dt1+t2=∫[t5−t3+t−tt2+1]dt=∫(t5−t3+t)dt−12∫2tt2+1dt
=t66−t44+t22−12log∣∣t2+1∣∣+C
=tan6x6−tan4x4+tan2x2−12log∣∣tan2x+1∣∣+C
=tan6x6−tan4x4+tan2x2−12×2log|secx|+C
=tan6x6−tan4x4+tan2x2−log|secx|+C
=f(x)+log|cosx|+C
where f(x) is a polynomial in tanx
Therefore,
degree of f(x) is 6.