If ∫(x3−2x2+3x−1)cos2xdx=sin2x4u(x)+cos2x8v(x)+c, then
A
u(x)=x3−4x2+3x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
u(x)=2x3−4x2+3x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
v(x)=3x2−4x+3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
v(x)=k6x2−8x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cu(x)=2x3−4x2+3x ∫(x2−2x2+3x−1)cos2xdx=∫x2cos2xdx−2∫x2cos2xdx+∫3xcos2xdx−∫cos2xdx=12x3sin2x−32∫x2sin2xdx−2∫x2cos2xdx+3∫xcos2xd−∫cos2xdx =34x2cos2x+12x3sin2x+32∫xcos2xdx−2∫x2cos2xdx−∫cos2xdx =x3sinxcosx−x2sin2x+34x2cos2x34xsin2x−xcos2x+38cos2x =14(2x3−4x2+3x)sin2x+18(12x3−16x2+6x)cos2x