If ∫(e2x+2ex-e-x-1)eex+e-xdx=g(x)eex+e-x+C, where C is a constant, then g(0) is equal to
2
e
1
e2
Explanation for the correct option.
Find the value of g(0):
Given,
∫(e2x+2ex-e-x-1)eex+e-xdx=g(x)eex+e-x+C.
Now, Differentiating both side,
(e2x+2ex-e-x-1)eex+e-x=ddxg(x)eex+e-x⇒(e2x+2ex-e-x-1)eex+e-x=g'(x)eex+e-x+g(x)ex-e-xeex+e-x[∵ddx(uv)=uddxv+vddxu]⇒(e2x+2ex-e-x-1)eex+e-x=eex+e-xg'(x)+g(x)ex-e-x⇒(e2x+2ex-e-x-1)=g'(x)+g(x)ex-e-x⇒e2x-1+ex+ex-e-x=g'(x)+g(x)ex-e-x⇒exex-e-x+ex-e-x+ex=g'(x)+g(x)ex-e-x⇒ex-e-xex+1+ex=ex-e-xg(x)+g'(x)
On comparing the coefficient of both side,
g(x)=ex+1
Therefore, g(0)=2.
Hence, the correct option is A.