If ∫fxdx=ψx, then ∫x5fx3dx=
13x3ψx3-∫x2ψx3dx+C
13x3ψx3-3∫x2ψx3dx+C
13x3ψx3-∫x2ψx2dx+C
Explanation for the correct option.
Find the value of the given integral.
Let x3=t, then 3x2dx=dt.
Now using the substitution the integral ∫x5fx3dx can be simplified as:
∫x5fx3dx=∫x3x2fx3dx=∫13x3fx33x2dx=13∫t·ftdt[x3=t,3x2dx=dt]=13t∫ftdt-∫1×∫ftdtdt+C=13tψt-∫ψtdt+C[∫f(x)dx=ψ(x)]=13x3ψx3-∫ψx33x2dx+C[x3=t,3x2dx=dt]=13x3ψx3-∫x2ψx3dx+C
Thus the value of the integral ∫x5fx3dx is 13x3ψx3-∫x2ψx3dx+C.
Hence, the correct option is C.