If ∫0pdx1+4x2=π8, then the value of p is
14
-12
32
12
Explanation for the correct option.
Find the value of p:
Given,
∫0pdx1+4x2=π8.
⇒∫0pdx414+x2=π8⇒14∫0pdx14+x2=π8⇒14×112tan-1(2x)0p=π8[∵∫dx1+x2=tan-1x+C]⇒12tan-12p-tan-10=π8⇒tan-12p=π4⇒2p=tanπ4⇒2p=1⇒p=12
Hence, the correct option is D.
If ∫0p11+4x2dx=π8, then the value of p is