If ∫dx(1+x)(x-x2)=Ax1-x+B1-x+C where C is real constant, then A+B=
3
0
1
2
Explanation for correct option:
Given: ∫dx(1+x)(x-x2)=Ax1-x+B1-x+C
Differentiating both sides,
⇒11+x(x-x2)=A1-xddxx12-xddx1-x121-x2+Bddx1-x-12[∵ddx∫fxdx=fx;ddxUV=VdUdx-UdVdxx2]⇒11+x(x-x2)=A1-x12x-12-x12-11-x-121-x2+B-12-11-x-32[∵ddxfgx=f'gx·g'x]⇒1x1+x(1-x)=12A1-xx+x1-x1-x2+B1211-x3⇒2x1+x(1-x)=A1-x+xx1-x3+B11-x3⇒2x1+x(1-x)=A+Bx1-xx1-x⇒21+x=A+Bx1-x⇒A+Bx=2(1-x)1+x⇒A+Bx=2(1-x)1+x×1-x1-x⇒A+Bx=2(1-x)1-x1-x2[∵a+ba-b=a2-b2]⇒A+Bx=2-2x
Comparing both sides, we get A=2,B=-2
∴A+B=2+(-2)=0
Hence, option(B) is correct.