The correct option is B k ∈ [13,3]
We have,
k=x2−x+1x2+x+1
⇒ k(x2+x+1)=x2−x+1
⇒ (k−1)x2+(k+1)x+(k−1)=0
As x∈R, so the equation has real roots when D≥0
⇒ b2−4ac≥0
On comparing with general form of Quadratic Equation ax2+bx+c=0
We get a=k−1, b=k+1, c=k−1
⇒ (k+1)2−4(k−1)(k−1)≥0
⇒ (k+1)2−(2(k−1))2≥0
⇒ [k+1+2(k−1)][k+1−2(k−1)]≥0
[∵ a2−b2=(a+b)(a−b)]
⇒ (3k−1)(−k+3)≥0
⇒ −3(k−13)(k−3)≥0
⇒ (k−13)(k−3)≤0
∴ k∈[13,3]
Hence, Option (A) is correct.