If iz3+z2−z+i=0, then show that |z|=1.
Or
Find the real values of x and y, if x−13+i+y−13−i=i.
Given, iz3+z2−z+i=0
⇒ z3+1iz2−1iz+1=0 [dividing both sides by i]
⇒ z3−iz2+iz+1=0 [∵ 1i=1i×ii=−i]
⇒ z2(z−i)+i(z−i)=0 [∵ i2=−1]
⇒ (z2+i)(z−i)=0
⇒ z2=−i or z=i
Now, z=i ⇒ |z|=|i|=1
and z2=−1
⇒ ∣∣z2∣∣=|−i|=1 ⇒ |z|2=1. [∵ |zn|=|z|n]
⇒ |z|=1
Hence, in either case, we have z2=−1 Hence, proved.
Or
Given, x−13+1+y−13−i=i
⇒ (x−1)(3−i)+(y−1)(3+i)(3+i)(3−i)=i
⇒ 3x−ix−3+i+3y+iy−3−i9−i2=i
⇒ (3x+3y−6)+i(y−x)9+1=i
⇒ (3x+3y−6)+i(y−x)=10i
On equating the real and imaginary parts, we get
3x+3y−6=0 and y−x=10
⇒ x+y=2 and y−x=10
On solving these equations, we get
x=−4, y=6