Given, J=−4∫−5(3−x2)tan(3−x2)dx
Putting (x+5)=t, we get
J=1∫0(3−(t−5)2)tan(3−(t−5)2)dt=1∫0(−22+10t−t2)tan(−22+10t−t2)dt.
Now, K=−1∫−2(6−6x+x2)tan(6x−x2−6)dx
Putting (x+2)=z, we get
K=1∫0(6−6(z−2)+(z−2)2)tan(6(z−2)−(z−2)2−6)dz=1∫0(22−10z+z2)tan(−22+10z−z2)dz=−J
Hence, (J+K)=0