If k>1 and the determinant of the matrix A2 is k2, then |α|=
A=kkαα0αkα00k
1k2
k
k2
1k
Explanation for the correct option:
Find the value of |α|:
The matrix A=kkαα0αkα00k, so
A=kαk-0-ka0-0+a0-0=αk2
Now,
A2=α2k4⇒k2=α2k4⇒1k2=α2⇒α=1k2=1k
Hence, option D is correct.