If k1, k2, k3,...,kn are odd natural numbers, then the remainder when k21+k22+k23+...+k2n is divided by 4, is always equal to
As k1, k2, k3, ..., kn are odd natural numbers, we have
k1=2m1+1
k2=2m2+1
k3=2m3+1
⋮
kn=2mn+1
where m1, m2, m3,..., mn are natural numbers.
Now, k21+k22+...+k2n
=(2m1+1)2+(2m2+1)2+...+(2mn+1)2
=(4m21+4m1+1)+(4m22+4m2+1)+...+(4m2n+4mn+1)
=4(m21+m22+...+m2n)+4(m1+m2+...+mn)+(1+1+...+1)
=4α+4β+n
(whereα=m21+m22+...+m2nandβ=m1+m2+...+mn)
=4(α+β)+n
Thus,k21+k22+...+k2n when divided by 4 gives remainder n.
Hence, the correct answer is option (b).