wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If k1=tan27θtanθ and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ then, find the relation between k1 and k2.

Open in App
Solution

We have k1=tan27θtanθ

=(tan27θtan9θ)+(tan9θtan3θ)+(tan3θtanθ)

Consider (tan27θtan9θ)=sin3θcos3θsinθcosθ

=sin3θcosθcos3θsinθcos3θcosθ

=sin(3θθ)cos3θcosθ .................. using sinAcosBcosAsinB=sin(AB)

=sin2θcos3θcosθ

=2sinθcosθcos3θcosθ

=2sinθcos3θ

Consider (tan9θtan3θ)=sin9θcos9θsin3θcos3θ
=sin9θcos3θcos9θsin3θcos9θcos3θ

=sin(9θ3θ)cos9θcos3θ ................. using sinAcosBcosAsinB=sin(AB)

=sin6θcos9θcos3θ

=2sin3θcos3θcos9θcosθ

=2sin3θcos9θ

Consider =(tan27θtan9θ)=sin27θcos27θsin9θcos9θ

=sin27θcos9θcos27θsin9θcos27θcos9θ

=sin(27θ9θ)cos27θcos9θ .................... using sinAcosBcosAsinB=sin(AB)

=sin18θcos27θcos9θ

=2sin9θcos9θcos27θcos9θ

=2sin9θcos27θ

k1=(tan27θtan9θ)+(tan9θtan3θ)+(tan3θtanθ)

=2sinθcos3θ+2sin3θcos9θ+2sin9θcos27θ

=2(sinθcos3θ+sin3θcos9θ+sin9θcos27θ)=2k2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon