The correct option is
C k1=2k2We have k1=tan27θ−tanθ
=(tan27θ−tan9θ)+(tan9θ−tan3θ)+(tan3θ−tanθ)
Consider =(tan27θ−tan9θ)=sin3θcos3θ−sinθcosθ
=sin3θcosθ−cos3θsinθcos3θcosθ
=sin(3θ−θ)cos3θcosθ using sinAcosB−cosAsinB=sin(A−B)
=sin2θcos3θcosθ
=2sinθcosθcos3θcosθ
=2sinθcos3θ
Similarly,
Consider =(tan9θ−tan3θ)=sin9θcos9θ−sin3θcos3θ
=sin9θcos3θ−cos9θsin3θcos9θcos3θ
=sin(9θ−3θ)cos9θcos3θ using sinAcosB−cosAsinB=sin(A−B)
=sin6θcos9θcos3θ
=2sin3θcos3θcos9θcosθ
=2sin3θcos9θ
Consider =(tan27θ−tan9θ)=sin27θcos27θ−sin9θcos9θ
=sin27θcos9θ−cos27θsin9θcos27θcos9θ
=sin(27θ−9θ)cos27θcos9θ using sinAcosB−cosAsinB=sin(A−B)
=sin18θcos27θcos9θ
=2sin9θcos9θcos27θcos9θ
=2sin9θcos27θ
∴,k1=(tan27θ−tan9θ)+(tan9θ−tan3θ)+(tan3θ−tanθ)
=2sinθcos3θ+2sin3θcos9θ+2sin9θcos27θ
=2(sinθcos3θ+sin3θcos9θ+sin9θcos27θ)=2k2