wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If k1=tan27θtanθ and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ
then,

A
k1=k2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
k1=2k2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
k1+k2=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
k2=2k1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C k1=2k2
We have k1=tan27θtanθ
=(tan27θtan9θ)+(tan9θtan3θ)+(tan3θtanθ)
Consider =(tan27θtan9θ)=sin3θcos3θsinθcosθ
=sin3θcosθcos3θsinθcos3θcosθ
=sin(3θθ)cos3θcosθ using sinAcosBcosAsinB=sin(AB)
=sin2θcos3θcosθ
=2sinθcosθcos3θcosθ
=2sinθcos3θ

Similarly,
Consider =(tan9θtan3θ)=sin9θcos9θsin3θcos3θ
=sin9θcos3θcos9θsin3θcos9θcos3θ
=sin(9θ3θ)cos9θcos3θ using sinAcosBcosAsinB=sin(AB)
=sin6θcos9θcos3θ
=2sin3θcos3θcos9θcosθ
=2sin3θcos9θ

Consider =(tan27θtan9θ)=sin27θcos27θsin9θcos9θ
=sin27θcos9θcos27θsin9θcos27θcos9θ
=sin(27θ9θ)cos27θcos9θ using sinAcosBcosAsinB=sin(AB)
=sin18θcos27θcos9θ
=2sin9θcos9θcos27θcos9θ
=2sin9θcos27θ
,k1=(tan27θtan9θ)+(tan9θtan3θ)+(tan3θtanθ)
=2sinθcos3θ+2sin3θcos9θ+2sin9θcos27θ
=2(sinθcos3θ+sin3θcos9θ+sin9θcos27θ)=2k2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon