The correct option is B (n+1)m+1−(n+1)
(1+x)m+1=1+m+1C1x1+m+1C2x2...+m+1Cm+1xm+1
(1+x)m+1−(1+xm+1)=m+1C1x1+m+1C2x2...+m+1Cmxm
Substituting x=1,2,3,4..n in the above equation we get.
[2m+1−1m+1+(3m+1−2m+1)...((n+1)m+1)−nm+1)]−n
=(n+1)m+1−(n)−1
=(n+1)m+1−(n+1)
Hence answer is Option A