If k∫01x·f(3x)dx=∫03t·f(t)dt, then the value of k is:
9
3
19
13
Explanation for the correct option:
Integration by substitution:
Let 3x=t, then dx=dt3.
k∫03t3·f(t)dt3=∫03t·f(t)dt⇒k9∫03t·f(t)dt=∫03t·f(t)dt⇒k9=1⇒k=9
Hence, option A is correct
If ∫025ex-xdx=k(e-1), then the value of k is