wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If k is and n be + ive integers and sk=1k+2k+3k...+nk, then show that
mr=1m+1CrSr=,(n+1)m+1(n+1).Hence evaluate s4.

Open in App
Solution

(1+x)m+1=m+1C0+m+1C1x+m+1C2x2+.....+m+1Cm+1xm+1
therefore[(1+x)m+1xm+1]1=mr=1m+1Crxr
Now put x = 1,2,3,....,n and add and put
1r+2r+3r+....nr=sr
L.H.S. is
(2m+11m+1)+(3m+12m+1)+(4m+13m+1)+..[(n+1)m+1
nm+1]1=(n+1)m+111
R.H.S. =mr=1m+1Crsr
Put 1=n
(n+1)m+1(n+1)=mr=1 ...(1)
Now putting m = 1 in (1),
(n+1)2(n+1)=1r=12Crsr=2C1s1=2s1
(n+1)ncdot12=s1=1+2+3+..n .(2)
(n+1)3(n+1)=2r=13Crsr=3C1s1+3C2s2
or (n+1)[(n+1)21]=3n(n+1)2+3s2
or (n+1)n(n+2)32n(n+1)=3s2
or n(n+1)(n+232)=3s2
or n(n+1)(2n+1)6=s2 ..(3)
Now putting m = 3 in (1), we get
(n+1)4(n+1)=3r=14Crsr
=4C1s1+4C2s2+4C3s3
=4n(n+1)2+4.31.2n(n+1)(2n+1)6+4s3
or (n+1)[(n+1)312nn(2n+1)]=4s3
or (n+1)(n3+3n2+3n+112n2n2n)=4s3
or (n+1)(n3+n2)=4s3
s3=14n2(n+1)2=[n(n+1)2]2
Lastly putting m = 4 in (1), we have
(n+1)5(n+1)=4r=15Crsr
=5C1s1+5C2s2+5C3s3+5C4s4
=5n(n+1)2+10n(n+1)(2n+1)6 +10n2(n+1)24+5s4
or (n+1)5(n+1)52n(n+1)
53n(n+1)(2n+1)52n2(n+1)2=5s4
(n+1)6[6(n+1)4615n+10(2n2+n)
15(n3+n2)]=5s4
s4=130(n+1)[6(n4+4n3+6n2+4n+1)
615n20n210n15n315n2]
=130(n+1)[6n4+9n3+n2n]
=130n(n+1)(6n3+9n2+n1)
=130n(n+1)(2n+1)(3n2+3n1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon