(1+x)m+1=m+1C0+m+1C1x+m+1C2x2+.....+m+1Cm+1xm+1
therefore[(1+x)m+1−xm+1]−1=∑mr=1m+1Crxr
Now put x = 1,2,3,....,n and add and put
1r+2r+3r+....nr=sr
L.H.S. is
(2m+1−1m+1)+(3m+1−2m+1)+(4m+1−3m+1)+..[(n+1)m+1
−nm+1]−∑1=(n+1)m+1−1−∑1
R.H.S. =∑mr=1m+1Crsr
Put ∑1=n
∴(n+1)m+1−(n+1)=∑mr=1 ...(1)
Now putting m = 1 in (1),
(n+1)2−(n+1)=∑1r=12Crsr=2C1⋅s1=2s1
∴(n+1)⋅ncdot12=s1=1+2+3+..n .(2)
(n+1)3−(n+1)=∑2r=13Crsr=3C1s1+3C2s2
or (n+1)[(n+1)2−1]=3⋅n(n+1)2+3s2
or (n+1)n⋅(n+2)−32n(n+1)=3s2
or n(n+1)(n+2−32)=3s2
or n(n+1)(2n+1)6=s2 ..(3)
Now putting m = 3 in (1), we get
(n+1)4−(n+1)=∑3r=14Crsr
=4C1s1+4C2s2+4C3s3
=4n(n+1)2+4.31.2n(n+1)(2n+1)6+4s3
or (n+1)[(n+1)3−1−2n−n(2n+1)]=4s3
or (n+1)(n3+3n2+3n+1−1−2n−2n2−n)=4s3
or (n+1)(n3+n2)=4s3
∴s3=14n2(n+1)2=[n(n+1)2]2
Lastly putting m = 4 in (1), we have
(n+1)5−(n+1)=∑4r=15Crsr
=5C1s1+5C2s2+5C3s3+5C4s4
=5⋅n(n+1)2+10⋅n(n+1)(2n+1)6 +10⋅n2(n+1)24+5⋅s4
or (n+1)5−(n+1)−52n(n+1)
−53n(n+1)(2n+1)−52n2(n+1)2=5s4
(n+1)6[6(n+1)4−6−15n+10(2n2+n)
−15(n3+n2)]=5s4
∴s4=130(n+1)[6(n4+4n3+6n2+4n+1)
−6−15n−20n2−10n−15n3−15n2]
=130(n+1)[6n4+9n3+n2−n]
=130n(n+1)(6n3+9n2+n−1)
=130n(n+1)(2n+1)(3n2+3n−1)