If k=sinπ18sin5π18sin7π18, then the numerical value of k is
14
18
116
None of these
Explanation for the correct option.
Step 1: Change it in form of 2sinAsinB.
Multiplying and dividing sinπ18sin5π18sin7π18 by 2, we get
122sinπ18sin5π18sin7π18=12cosπ18-5π18-cosπ18+5π18sin7π18by2sinAsinB=cosA-B-cosA+B=12cos4π18-cos6π18sin7π18bycos-θ=cosθ=12cos4π18·sin7π18-cosπ3·sin7π18
Step 2: Change it in form of 2cosAcosB.
=12122cos4π18·sin7π18-12·sin7π18=1212sin7π18+4π18+sin7π18-4π18-12·sin7π18;by2sinAcosB=sinA+B+sinsA-B=1212sin11π18+sin3π18-12·sin7π18=1212sinπ-7π18+sinπ6-12·sin7π18=1212sin7π18+12-12·sin7π18bysinπ-θ=sinθ=1212sin7π18+14-12sin7π18=18
Therefore, k=18
Hence, option B is correct.
If k=sinπ18.sin5π18.sin7π18 then the numerical value of k is