wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If k=sinπ18sin5π18sin7π18, then the numerical value of k is


A

14

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

18

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

116

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

18


Explanation for the correct option.

Step 1: Change it in form of 2sinAsinB.

Multiplying and dividing sinπ18sin5π18sin7π18 by 2, we get

122sinπ18sin5π18sin7π18=12cosπ18-5π18-cosπ18+5π18sin7π18by2sinAsinB=cosA-B-cosA+B=12cos4π18-cos6π18sin7π18bycos-θ=cosθ=12cos4π18·sin7π18-cosπ3·sin7π18

Step 2: Change it in form of 2cosAcosB.

=12122cos4π18·sin7π18-12·sin7π18=1212sin7π18+4π18+sin7π18-4π18-12·sin7π18;by2sinAcosB=sinA+B+sinsA-B=1212sin11π18+sin3π18-12·sin7π18=1212sinπ-7π18+sinπ6-12·sin7π18=1212sin7π18+12-12·sin7π18bysinπ-θ=sinθ=1212sin7π18+14-12sin7π18=18

Therefore, k=18

Hence, option B is correct.


flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon