Ifthatrepresentstwostraightline,thatmeanstheequationcanbereducedinto,y=m1x+c1andy=m2x+c2Now,(y−m1x−c1)(y−m2x−c2)=0sincethecoefficientofy2is12.wehavetomultiplybothsidesby12.12(y−m1x−c1)(y−m2x−c2)=0weknowmanythingsactuallytofindouttheconstants.Wehavec1c2=−14c1+c2=43wecanformaquadraticequationwithc1,c2asroots:x2−43x−14=012x2−16x−3=0(6x+1)(2x−3)=0assume(c1,c2)=(32,−16)m1+m2=56−−(1)m1c2+m2c1=512−m16+3m22=512−2m1+18m2=5−−−−(2)Oncombiningbothequations,wegetm1=12and,m2=13So,thecoefficientofx2is12m1m2=2Hence,thevalueofkis2!