The correct option is D R−{0}
kx2+ky2−4x−6y−2k=0
Clearly, k≠0
Hence, the above equation can be rewritten as,
x2+y2−4xk−6yk−2=0
⇒g=−2k, f=−3k, c=−2
For real circle,
Radius of the circle, r≥0
⇒g2+f2−c≥0⇒(−2k)2+(−3k)2+2≥0⇒4k2+9k2+2≥0⇒13+2k2≥0
which is true for all real values of k.
Hence, k∈R−{0}