If l(m−n)x2+m(n−l)xy+n(l−m)y2 is a perfect square, then the quantities l,m,n are in
A
G.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
H.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
A.G.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B H.P. Since, l(m−n)x2+m(n−l)xy+n(l−m)y2 is a perfect square. Therefore, l(m−n)x2+m(n−l)xy+m(l−m)y2=0 are equal. ∴D=[m(n−l)]2−4ln(m−n)(l−m)=0 ⇒m2(n−l)2=−4ln[m2−m(l+n)+ln] ⇒m2[(n−l)2+4ln]−4lmn(l+n)+4l2n2=0 ⇒m2(l+n)2−4lmn(l+n)+4l2n2=0 ⇒[m(l+n)−2ln]2=0 ⇒m(l+n)=2ln ⇒m=2lnl+n Therefore, l,m,n are in H.P Ans: B