L=limx→0(tanxx)1/x2 [1∞ form]
Now, taking log on both sides, we get
⇒lnL=limx→0ln(tanxx)x2⇒lnL=limx→0lntanx−lnxx2
Using L'Hospital's Rule,
Differntiate with respect to 'x' we get
⇒lnL=limx→0sec2xtanx−1x2x⇒lnL=limx→0x−sinxcosx2x2sinxcosx⇒lnL=limx→02x−sin2x4x3
Using L'Hospital's Rule,
Differntiate with respect to 'x' we get
⇒lnL=limx→02−2cos2x12x2⇒lnL=limx→02sin2x6x2⇒ln=26limx→0sin2xx2lnL=13(1)∴1lnL=3