The correct options are
C (a)
(a,b)=(−1,0) D (d)
l=12For given limit to exist, it should be of form
00.
Now for limit, using L'Hopital rules (differentiating 3 time because denominator has power 3):
l=limx→0=x(1+acosx)−bsinxx3=limx→01−axsinx+acosx−bcosx3x2
For limit to be finite:
1+(a−b)=0⟹a−b=−1........[1]
Again differentiating:
l=limx→0−axcosx−asinx−asinx+bsinx6x
Again differentiating:
l=limx→0−acosx+axsinx−acosx−acosx+bcosx6=−a−a−a+b6
Now for b=0;
a=−1+b=−1
So, l=−3a6=12