If l, m, n are 3 positive roots of the equation (p, q ϵ R), then the minimum value of l + 2m + 3n is
18
Consider l, 2m, 3n and use AM ≥ GM
l+2m+3n3 ≥ (l.2m.3n)13
l + 2m + 3n ≥ 3 (6lmn)13 -----------(1)
Given l, m, n are roots of x3 - px2 + qx - 36 = 0
Product of roots = lmn = 36
(1) ⇒ l + 2m + 3n ≥ 3(6×36)13
≥3.6
l + 2m + 3n ≥ 18
so, minimum value of l + 2m + 3n is 18