If L=sin2π16-sin2π8 and M=cos2π16-sin2π8, then
M=122+12cosπ8
M=142+14cosπ8
L=-122+12cosπ8
L=142-14cosπ8
Explanation for the correct option:
Step 1: Simplify the expression L
Given, L=sin2π16-sin2π8
=sinπ16+π8sinπ16-π8[∵sin2A-sin2B=sin(A+B)sin(A-B)]=sin3π16sin-π16=12-2sin3π16sinπ16[∵sin(-θ)=-sinθ]=12cos4π16-cos2π16[∵-2sinAsinB=cos(A+B)-cos(A-B)]=1212-cosπ8[∵cosπ4=12]=122-12cosπ8
Step 2: Simplify the expression M
Given, M=cos2π16-sin2π8
=cosπ16+π8cosπ16-π8[∵cos2A-sin2B=cos(A+B)cos(A-B)]=cos3π16cos-π16=122cos3π16cosπ16[∵cos(-θ)=cosθ]=12cos3π16+π16+cos3π16-π16[∵2cosAcosB=cos(A+B)+cos(A-B)]=12cos4π16+cos2π16=1212+cosπ8[∵cosπ4=12]=122+12cosπ8
Therefore, option (A) M=122+12cosπ8 is the correct answer.