wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If L=sin2π16-sin2π8 and M=cos2π16-sin2π8, then


A

M=122+12cosπ8

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

M=142+14cosπ8

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

L=-122+12cosπ8

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

L=142-14cosπ8

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

M=122+12cosπ8


Explanation for the correct option:

Step 1: Simplify the expression L

Given, L=sin2π16-sin2π8

=sinπ16+π8sinπ16-π8[sin2A-sin2B=sin(A+B)sin(A-B)]=sin3π16sin-π16=12-2sin3π16sinπ16[sin(-θ)=-sinθ]=12cos4π16-cos2π16[-2sinAsinB=cos(A+B)-cos(A-B)]=1212-cosπ8[cosπ4=12]=122-12cosπ8

Step 2: Simplify the expression M

Given, M=cos2π16-sin2π8

=cosπ16+π8cosπ16-π8[cos2A-sin2B=cos(A+B)cos(A-B)]=cos3π16cos-π16=122cos3π16cosπ16[cos(-θ)=cosθ]=12cos3π16+π16+cos3π16-π16[2cosAcosB=cos(A+B)+cos(A-B)]=12cos4π16+cos2π16=1212+cosπ8[cosπ4=12]=122+12cosπ8

Therefore, option (A) M=122+12cosπ8 is the correct answer.


flag
Suggest Corrections
thumbs-up
65
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon