If λ1 and λ2 are the two values of λ such that the roots α and β of the quadratic equation, λ(x2−x)+x+5=0 satisfy αβ+βα+45=0, then λ1λ22+λ2λ21=0 is equal to:
Given quadratic equation is λ(x2−x)+x+5=0
⇒λx2+(1−λ)x+5=0<αβ
Since αβ+βα+45=0
Therefore, (α+β)2−2αβαβ+45=0
⇒(λ−1λ)2−10λ(5/λ)=−45
⇒λ2−2λ+1λ2−10λ=−4λ
⇒λ2−2λ+1=6λ
⇒λ2−8λ+1=0
λ1 and λ2 are two values of λ.
Now, λ1λ22+λ2λ21=λ31+λ32(λ1⋅λ2)2=(λ1+λ2)3−3λ1λ2(λ1+λ2)(λ1⋅λ2)2=512−24=488