The correct option is D ϕ
(λ−2)x2+(λ−1)x+3<0,∀ x∈R
So, a<0, D<0
⇒λ−2<0⇒λ<2 ⋯(1)
D<0⇒(λ−1)2−12(λ−2)<0⇒λ2−2λ+1−12λ+24<0⇒λ2−14λ+25<0
Now, λ2−14λ+25=0
⇒λ=14±√196−1002⇒λ=14±√962=7±2√6
So, λ2−14λ+25<0
⇒7−2√6<λ<7+2√6 ⋯(2)
From equations (1) and (2), we get
λ∈ϕ