The correct option is
A 3using binomial theorem,
(a+b)n=n∑k=0(nk)an−kbk, where Tn+1=(nk)an−rbr
(a+b)n+b=n+3∑k=0(n+3k)an+3−kbk
In (a+b)n,
The second term of (a+b)n,t2=(n1)an−1b1
=nan−1b.
The third term of (a+b)n,t3=(n2)an−2b2=n!2!(n−2)!an−2b2
=n(n−1)(n−2)!2(n−2)!an−2b2
=n(n−1)2an−2b2
∴t2t3=nan−1bn(n−1)lan−2b2=2a(n−1)b.......(1)
In (a+b)n+3,
The third term, t3=(n+32)an+3−2b2=(n+3)!2!(n+3−2)!an+1b2
=(n+3)(n+2)(n+1)!2(n+1)!an+1b2
=(n+3)(n+2)2an+1b2
The forth term, t4=(n+33)an+3−3b3=(n+3)!3!(n+3−3)!anb3
=(n+3)(n+2)(n+1)n!6n!anb3
=(n+3)(n+2)(n+1)6anb3
∴t3t4=(n+3)(n+2)an+1b22(n+3)(n+2)(n+1)6anb3=3a(n+1)b.......(2)
As per question, (1) and (2) are equal
ie 2a(n−1)b=3a(n+1)b
⇒2(n+1)=3(n−1)
⇒2n+2=3n−1
⇒2+1=3n−2n
⇒n=3.