If largest subset of (0,p), in which the function f(x)=3cos4x+10cos3x+6cos2x−3 is strictly decreasing, is (0,πp)∪(2πr,π), then find the value of (p+r).
Open in App
Solution
f′(x)=12cos3x(−sinx)+30cos2x(−sinx)+12cosx(=sinx) =−3sin2x(2cos2x+5cosx+2) =−3sin2x(2cosx+1)(cosx+2) f′(x)<0 for strictly decreasing function. ⇒(sin2x)(2cosx+1)>0 This will be possible in (0,π2)∪(2π3,π) Hence, p=2 and r=3