If (1+ax+bx2)4=a0+a1x+a2x2+.........+a8x8, where a,b,a0,a1,.......a8∈R such that a0+a1+a2≠0 and ∣∣
∣∣a0a1a2a1a2a0a2a0a1∣∣
∣∣=0, then the value of 5ab is ............
Open in App
Solution
(1+ax+bx2)4=a0+a1x+a2x2+.........+a8x8 ----(1) such that a0+a1+a2≠0 ∣∣
∣∣a0a1a2a1a2a0a2a0a1∣∣
∣∣=0 ⇒−(a0+a1+a2)(a20+a21+a22−a0a1−a1a2−a2a0)=0 ⇒−12(a0+a1+a2)((a0−a1)2+(a1−a2)2+(a2−a0)2)=0 ∴a0=a1=a2 (∵a0+a1+a2≠0) put x=0 in (1) ⇒a0=1 differentiating (1) on both sides gives 4(1+ax+bx2)3(a+2bx)=a1+2a2x+⋯+8a8x7 -----(2) put x=0 in (2) ⇒4a=a1 differentiating (2) on both sides gives 4((1+ax+bx2)3(2b)+3(a+2bx)2(1+ax+bx2)2)=2a2+6a3x+⋯+56a8x6 ----(3) put x=0 in (3) 4(2b+3a2)=2a2 ∴1=4a=4b+6a2 ⇒a=14,b=532 ∴5ab=8