wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (1x3)n=nr=0arxr(1x)3n2r, then find ar, where nN

Open in App
Solution

(1x3)n = (1x)n.(1+x+x2)n
(1x)n.((1x)2+3x)n = (1x)n(nr=0nCr.(1x)2n2r.(3x)r)
(1x)n.((1x)2+3x)n = (nr=0nCr.3r.(1x)3n2r.(x)r)
Hence, ar=nCr.3r

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon