No worries! Weâve got your back. Try BYJUâS free classes today!
B
tannπ4
No worries! Weâve got your back. Try BYJUâS free classes today!
C
cotnπ4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
icotnπ4
No worries! Weâve got your back. Try BYJUâS free classes today!
Open in App
Solution
The correct option is Ccotnπ4 Let x=i Hence, (1+i)n=P0+P1i+P2i2+P3i3...+Pnin (1+i)n=P0+P1i−P2−P3i+... (1+i)n=(P0−P2+P4−P6+...)+i(P1−P3+P5−...) ⇒(√2)n.einπ4=(P0−P2+P4+...)+i(P1−P3+P5−...) Comparing real and imaginary parts, P0−P2+P1...=(√2)2cosnπ4------(1) and P1−P3+P5....=(√2)2sinnπ4----------(2) So, (1)(2)= required expression =cot(nπ4)